すべて | グループ指定なし | コンサル | 論説ブログ | ビジネスパーソン | 情報サイト | 金融
「命題論理の完全性定理」というのは、「トートロジーは必ず証明できる」という定理である。もう少し詳しく説明しよう。与えられた命題について、それを構成する命題変数にどんな真偽を割り当ててもその命題が真であるとき、その命題をトートロジー(恒真命題)と呼ぶ。与えられた命題がトートロジーであるなら、その命題は必ず、通常の(公理から出発する形式的な)推論規則によって証明できる、というものだ。例えば、命題変数から生成される命題を考えてみる。にどんな真偽の組み合わせ(4通り)を当てはめても、この命題は必ず真であるからトートロジーである。このとき、この論理式は推論規則で導出することができる。(どのように導出されるかは、拙著『証明と論理に強くなる』で読んでくださいな)。「命題論理の完全性定理」は、このようなことが一般的に成り立つことを主張している。すなわち、「形式的に証明できる命題は常に正しい」だけではなく、
この広告は、90日以上更新していないブログに表示しています。